| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-fac | GIF version | ||
| Description: Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 10565). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| df-fac | ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I , ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfa 9652 | . 2 class ! | |
| 2 | cc0 6981 | . . . . 5 class 0 | |
| 3 | c1 6982 | . . . . 5 class 1 | |
| 4 | 2, 3 | cop 3401 | . . . 4 class 〈0, 1〉 |
| 5 | 4 | csn 3398 | . . 3 class {〈0, 1〉} |
| 6 | cmul 6986 | . . . 4 class · | |
| 7 | cc 6979 | . . . 4 class ℂ | |
| 8 | cid 4043 | . . . 4 class I | |
| 9 | 6, 7, 8, 3 | cseq 9431 | . . 3 class seq1( · , I , ℂ) |
| 10 | 5, 9 | cun 2971 | . 2 class ({〈0, 1〉} ∪ seq1( · , I , ℂ)) |
| 11 | 1, 10 | wceq 1284 | 1 wff ! = ({〈0, 1〉} ∪ seq1( · , I , ℂ)) |
| Colors of variables: wff set class |
| This definition is referenced by: facnn 9654 fac0 9655 |
| Copyright terms: Public domain | W3C validator |