![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfif6 | GIF version |
Description: An alternate definition of the conditional operator df-if 3352 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif6 | ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 3231 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | df-rab 2357 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | df-rab 2357 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)} | |
4 | 2, 3 | uneq12i 3124 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) |
5 | df-if 3352 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
6 | 1, 4, 5 | 3eqtr4ri 2112 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 ∨ wo 661 = wceq 1284 ∈ wcel 1433 {cab 2067 {crab 2352 ∪ cun 2971 ifcif 3351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-un 2977 df-if 3352 |
This theorem is referenced by: ifeq1 3354 ifeq2 3355 dfif3 3364 |
Copyright terms: Public domain | W3C validator |