| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfif3 | GIF version | ||
| Description: Alternate definition of the conditional operator df-if 3352. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif6 3353 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
| 3 | biidd 170 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | cbvabv 2202 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} |
| 5 | 2, 4 | eqtri 2101 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} |
| 6 | 5 | ineq2i 3164 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) |
| 7 | dfrab3 3240 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
| 8 | 6, 7 | eqtr4i 2104 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} |
| 9 | dfrab3 3240 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
| 10 | notab 3234 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜑}) | |
| 11 | 5 | difeq2i 3087 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑦 ∣ 𝜑}) |
| 12 | 10, 11 | eqtr4i 2104 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) |
| 13 | 12 | ineq2i 3164 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) |
| 14 | 9, 13 | eqtr2i 2102 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} |
| 15 | 8, 14 | uneq12i 3124 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) |
| 16 | 1, 15 | eqtr4i 2104 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1284 {cab 2067 {crab 2352 Vcvv 2601 ∖ cdif 2970 ∪ cun 2971 ∩ cin 2972 ifcif 3351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-if 3352 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |