| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrab3ss | GIF version | ||
| Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| dfrab3ss | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 2986 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ineq1 3160 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
| 3 | 2 | eqcomd 2086 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
| 4 | 1, 3 | sylbi 119 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
| 5 | dfrab3 3240 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 6 | dfrab3 3240 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
| 7 | 6 | ineq2i 3164 | . . 3 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
| 8 | inass 3176 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) | |
| 9 | 7, 8 | eqtr4i 2104 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) |
| 10 | 4, 5, 9 | 3eqtr4g 2138 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 {cab 2067 {crab 2352 ∩ cin 2972 ⊆ wss 2973 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |