ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3ss Unicode version

Theorem dfrab3ss 3242
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
Assertion
Ref Expression
dfrab3ss  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  =  ( A  i^i  { x  e.  B  |  ph } ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab3ss
StepHypRef Expression
1 df-ss 2986 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ineq1 3160 . . . 4  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  i^i  { x  |  ph } )  =  ( A  i^i  {
x  |  ph }
) )
32eqcomd 2086 . . 3  |-  ( ( A  i^i  B )  =  A  ->  ( A  i^i  { x  | 
ph } )  =  ( ( A  i^i  B )  i^i  { x  |  ph } ) )
41, 3sylbi 119 . 2  |-  ( A 
C_  B  ->  ( A  i^i  { x  | 
ph } )  =  ( ( A  i^i  B )  i^i  { x  |  ph } ) )
5 dfrab3 3240 . 2  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
6 dfrab3 3240 . . . 4  |-  { x  e.  B  |  ph }  =  ( B  i^i  { x  |  ph }
)
76ineq2i 3164 . . 3  |-  ( A  i^i  { x  e.  B  |  ph }
)  =  ( A  i^i  ( B  i^i  { x  |  ph }
) )
8 inass 3176 . . 3  |-  ( ( A  i^i  B )  i^i  { x  | 
ph } )  =  ( A  i^i  ( B  i^i  { x  | 
ph } ) )
97, 8eqtr4i 2104 . 2  |-  ( A  i^i  { x  e.  B  |  ph }
)  =  ( ( A  i^i  B )  i^i  { x  | 
ph } )
104, 5, 93eqtr4g 2138 1  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  =  ( A  i^i  { x  e.  B  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   {cab 2067   {crab 2352    i^i cin 2972    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator