ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocld GIF version

Theorem ectocld 6195
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 elqsi 6181 . . . 4 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
2 ectocl.1 . . . 4 𝑆 = (𝐵 / 𝑅)
31, 2eleq2s 2173 . . 3 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
4 ectocld.3 . . . . 5 ((𝜒𝑥𝐵) → 𝜑)
5 ectocl.2 . . . . . 6 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
65eqcoms 2084 . . . . 5 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
74, 6syl5ibcom 153 . . . 4 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
87rexlimdva 2477 . . 3 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
93, 8syl5 32 . 2 (𝜒 → (𝐴𝑆𝜓))
109imp 122 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wrex 2349  [cec 6127   / cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-qs 6135
This theorem is referenced by:  ectocl  6196  elqsn0m  6197  qsel  6206
  Copyright terms: Public domain W3C validator