ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m GIF version

Theorem elqsn0m 6197
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elqsn0m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2142 . . 3 ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅𝑥𝐵))
32exbidv 1746 . 2 ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥𝐵))
4 eleq2 2142 . . . 4 (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅𝑦𝐴))
54biimpar 291 . . 3 ((dom 𝑅 = 𝐴𝑦𝐴) → 𝑦 ∈ dom 𝑅)
6 ecdmn0m 6171 . . 3 (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅)
75, 6sylib 120 . 2 ((dom 𝑅 = 𝐴𝑦𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅)
81, 3, 7ectocld 6195 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  dom cdm 4363  [cec 6127   / cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-ec 6131  df-qs 6135
This theorem is referenced by:  elqsn0  6198  ecelqsdm  6199
  Copyright terms: Public domain W3C validator