ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3392
Description: An element of a power class is a subclass. Deduction form of elpwi 3391. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (𝜑𝐴 ∈ 𝒫 𝐵)
Assertion
Ref Expression
elpwid (𝜑𝐴𝐵)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
2 elpwi 3391 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
31, 2syl 14 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  wss 2973  𝒫 cpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by:  fopwdom  6333  elnp1st2nd  6666  ixxssxr  8923  elfzoelz  9157
  Copyright terms: Public domain W3C validator