| Step | Hyp | Ref
| Expression |
| 1 | | imassrn 4699 |
. . . . . 6
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
| 2 | | dfdm4 4545 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
| 3 | | fof 5126 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 4 | | fdm 5070 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 6 | 2, 5 | syl5eqr 2127 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran ◡𝐹 = 𝐴) |
| 7 | 1, 6 | syl5sseq 3047 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
| 8 | 7 | adantl 271 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
| 9 | | cnvexg 4875 |
. . . . . 6
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
| 10 | 9 | adantr 270 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ◡𝐹 ∈ V) |
| 11 | | imaexg 4700 |
. . . . 5
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑎) ∈ V) |
| 12 | | elpwg 3390 |
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ V → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
| 14 | 8, 13 | mpbird 165 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
| 15 | 14 | a1d 22 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (𝑎 ∈ 𝒫 𝐵 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴)) |
| 16 | | imaeq2 4684 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
| 17 | 16 | adantl 271 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
| 18 | | simpllr 500 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝐹:𝐴–onto→𝐵) |
| 19 | | simplrl 501 |
. . . . . . . 8
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ∈ 𝒫 𝐵) |
| 20 | 19 | elpwid 3392 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ⊆ 𝐵) |
| 21 | | foimacnv 5164 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 22 | 18, 20, 21 | syl2anc 403 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
| 23 | | simplrr 502 |
. . . . . . . 8
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ∈ 𝒫 𝐵) |
| 24 | 23 | elpwid 3392 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ⊆ 𝐵) |
| 25 | | foimacnv 5164 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑏 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
| 26 | 18, 24, 25 | syl2anc 403 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
| 27 | 17, 22, 26 | 3eqtr3d 2121 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 = 𝑏) |
| 28 | 27 | ex 113 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → 𝑎 = 𝑏)) |
| 29 | | imaeq2 4684 |
. . . 4
⊢ (𝑎 = 𝑏 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) |
| 30 | 28, 29 | impbid1 140 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏)) |
| 31 | 30 | ex 113 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ((𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏))) |
| 32 | | rnexg 4615 |
. . . . 5
⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) |
| 33 | | forn 5129 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
| 34 | 33 | eleq1d 2147 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
| 35 | 32, 34 | syl5ibcom 153 |
. . . 4
⊢ (𝐹 ∈ V → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| 36 | 35 | imp 122 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
| 37 | | pwexg 3954 |
. . 3
⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) |
| 38 | 36, 37 | syl 14 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ∈ V) |
| 39 | | dmfex 5099 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| 40 | 3, 39 | sylan2 280 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝐴 ∈ V) |
| 41 | | pwexg 3954 |
. . 3
⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) |
| 42 | 40, 41 | syl 14 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐴 ∈ V) |
| 43 | 15, 31, 38, 42 | dom3d 6277 |
1
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) |