ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwuni GIF version

Theorem elpwuni 3762
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 3760 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissel 3630 . . . 4 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
32expcom 114 . . 3 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
4 eqimss 3051 . . 3 ( 𝐴 = 𝐵 𝐴𝐵)
53, 4impbid1 140 . 2 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
61, 5syl5bb 190 1 (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  wss 2973  𝒫 cpw 3382   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-uni 3602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator