| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iinpw | GIF version | ||
| Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iinpw | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 3652 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
| 2 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elpw 3388 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥) |
| 4 | 3 | ralbii 2372 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 5 | 1, 4 | bitr4i 185 | . . 3 ⊢ (𝑦 ⊆ ∩ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
| 6 | 2 | elpw 3388 | . . 3 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ⊆ ∩ 𝐴) |
| 7 | eliin 3683 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥)) | |
| 8 | 2, 7 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥) |
| 9 | 5, 6, 8 | 3bitr4i 210 | . 2 ⊢ (𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥) |
| 10 | 9 | eqriv 2078 | 1 ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∀wral 2348 Vcvv 2601 ⊆ wss 2973 𝒫 cpw 3382 ∩ cint 3636 ∩ ciin 3679 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-int 3637 df-iin 3681 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |