![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elqsg | GIF version |
Description: Closed form of elqs 6180. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
elqsg | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2087 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅 ↔ 𝐵 = [𝑥]𝑅)) | |
2 | 1 | rexbidv 2369 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
3 | df-qs 6135 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
4 | 2, 3 | elab2g 2740 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 [cec 6127 / cqs 6128 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-qs 6135 |
This theorem is referenced by: elqs 6180 elqsi 6181 ecelqsg 6182 |
Copyright terms: Public domain | W3C validator |