ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq2 GIF version

Theorem qseq2 6178
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 6166 . . . . 5 (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵)
21eqeq2d 2092 . . . 4 (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴𝑦 = [𝑥]𝐵))
32rexbidv 2369 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥𝐶 𝑦 = [𝑥]𝐵))
43abbidv 2196 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵})
5 df-qs 6135 . 2 (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴}
6 df-qs 6135 . 2 (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵}
74, 5, 63eqtr4g 2138 1 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  {cab 2067  wrex 2349  [cec 6127   / cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-ec 6131  df-qs 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator