ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12 GIF version

Theorem eqeq12 2093
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2087 . 2 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
2 eqeq2 2090 . 2 (𝐶 = 𝐷 → (𝐵 = 𝐶𝐵 = 𝐷))
31, 2sylan9bb 449 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  eqeq12i  2094  eqeq12d  2095  eqeqan12d  2096  funopg  4954  tfri3  5976  th3qlem1  6231  xpdom2  6328  xrlttri3  8872  bcn1  9685
  Copyright terms: Public domain W3C validator