| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq12i | GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
| eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | eqeq12 2093 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 416 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: rabbi 2531 sbceqg 2922 preqr2g 3559 preqr2 3561 otth 3997 rncoeq 4623 eqfnov 5627 mpt22eqb 5630 f1o2ndf1 5869 ecopovsym 6225 sq11i 9565 |
| Copyright terms: Public domain | W3C validator |