ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12i GIF version

Theorem eqeq12i 2094
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeq12i.1 𝐴 = 𝐵
eqeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eqeq12i (𝐴 = 𝐶𝐵 = 𝐷)

Proof of Theorem eqeq12i
StepHypRef Expression
1 eqeq12i.1 . 2 𝐴 = 𝐵
2 eqeq12i.2 . 2 𝐶 = 𝐷
3 eqeq12 2093 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
41, 2, 3mp2an 416 1 (𝐴 = 𝐶𝐵 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  rabbi  2531  sbceqg  2922  preqr2g  3559  preqr2  3561  otth  3997  rncoeq  4623  eqfnov  5627  mpt22eqb  5630  f1o2ndf1  5869  ecopovsym  6225  sq11i  9565
  Copyright terms: Public domain W3C validator