| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqnetrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnetrd.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | eqnetrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | neeq1d 2263 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| 4 | 1, 3 | mpbird 165 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-ne 2246 |
| This theorem is referenced by: eqnetrrd 2271 frecsuclem3 6013 bezoutr1 10422 |
| Copyright terms: Public domain | W3C validator |