ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem3 GIF version

Theorem frecsuclem3 6013
Description: Lemma for frecsuc 6014. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥,𝑧   𝐵,𝑔,𝑚,𝑥,𝑧   𝑔,𝐹,𝑚,𝑥,𝑧   𝑔,𝐺,𝑚,𝑥,𝑧   𝑔,𝑉,𝑚,𝑥
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem frecsuclem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . . . . . . . . . . . . 13 recs(𝐺) = recs(𝐺)
2 frecsuclem1.h . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32frectfr 6008 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
41, 3tfri1d 5972 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → recs(𝐺) Fn On)
5 fnfun 5016 . . . . . . . . . . . 12 (recs(𝐺) Fn On → Fun recs(𝐺))
64, 5syl 14 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → Fun recs(𝐺))
763adant3 958 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → Fun recs(𝐺))
8 peano2 4336 . . . . . . . . . . 11 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
983ad2ant3 961 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → suc 𝐵 ∈ ω)
10 resfunexg 5403 . . . . . . . . . 10 ((Fun recs(𝐺) ∧ suc 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
117, 9, 10syl2anc 403 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
12 simp1 938 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
13 simp2 939 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → 𝐴𝑉)
1411, 12, 13frecabex 6007 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V)
15 dmeq 4553 . . . . . . . . . . . . . . . . 17 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵))
1615eqeq1d 2089 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚))
17 fveq1 5197 . . . . . . . . . . . . . . . . . 18 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚))
1817fveq2d 5202 . . . . . . . . . . . . . . . . 17 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))
1918eleq2d 2148 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))
2016, 19anbi12d 456 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
2120rexbidv 2369 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
2215eqeq1d 2089 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅))
2322anbi1d 452 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
2421, 23orbi12d 739 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
2524abbidv 2196 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
2625, 2fvmptg 5269 . . . . . . . . . . 11 (((recs(𝐺) ↾ suc 𝐵) ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
2726ex 113 . . . . . . . . . 10 ((recs(𝐺) ↾ suc 𝐵) ∈ V → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
2811, 27syl 14 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
292frecsuclem1 6010 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
3029eqeq1d 2089 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ↔ (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
3128, 30sylibrd 167 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
3214, 31mpd 13 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
3332abeq2d 2191 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
342frecsuclemdm 6011 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
35 peano3 4337 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
36353ad2ant3 961 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → suc 𝐵 ≠ ∅)
3734, 36eqnetrd 2269 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅)
3837neneqd 2266 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ¬ dom (recs(𝐺) ↾ suc 𝐵) = ∅)
3938intnanrd 874 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))
40 biorf 695 . . . . . . . 8 (¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
4139, 40syl 14 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
42 orcom 679 . . . . . . 7 (((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
4341, 42syl6bb 194 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
4434eqeq1d 2089 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚))
45 vex 2604 . . . . . . . . . . . 12 𝑚 ∈ V
46 suc11g 4300 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
4745, 46mpan2 415 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
48473ad2ant3 961 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
4944, 48bitrd 186 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝐵 = 𝑚))
50 eqcom 2083 . . . . . . . . 9 (𝐵 = 𝑚𝑚 = 𝐵)
5149, 50syl6bb 194 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑚 = 𝐵))
5251anbi1d 452 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
5352rexbidv 2369 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
5433, 43, 533bitr2d 214 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
55 fveq2 5198 . . . . . . . 8 (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵))
5655fveq2d 5202 . . . . . . 7 (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
5756eleq2d 2148 . . . . . 6 (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
5857ceqsrexbv 2726 . . . . 5 (∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
5954, 58syl6bb 194 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))))
60593anibar 1106 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
6160eqrdv 2079 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
622frecsuclem2 6012 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
6362fveq2d 5202 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
6461, 63eqtrd 2113 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wne 2245  wrex 2349  Vcvv 2601  c0 3251  cmpt 3839  Oncon0 4118  suc csuc 4120  ωcom 4331  dom cdm 4363  cres 4365  Fun wfun 4916   Fn wfn 4917  cfv 4922  recscrecs 5942  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecsuc  6014
  Copyright terms: Public domain W3C validator