| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsb3 | GIF version | ||
| Description: Substitution applied to an atomic wff (class version of equsb3 1866). (Contributed by Rodolfo Medina, 28-Apr-2010.) |
| Ref | Expression |
|---|---|
| eqsb3 | ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsb3lem 2181 | . . 3 ⊢ ([𝑤 / 𝑦]𝑦 = 𝐴 ↔ 𝑤 = 𝐴) | |
| 2 | 1 | sbbii 1688 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑤]𝑤 = 𝐴) |
| 3 | nfv 1461 | . . 3 ⊢ Ⅎ𝑤 𝑦 = 𝐴 | |
| 4 | 3 | sbco2 1880 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑦]𝑦 = 𝐴) |
| 5 | eqsb3lem 2181 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝐴 ↔ 𝑥 = 𝐴) | |
| 6 | 2, 4, 5 | 3bitr3i 208 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 |
| This theorem is referenced by: pm13.183 2732 eqsbc3 2853 |
| Copyright terms: Public domain | W3C validator |