| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2087 |
. 2
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) |
| 2 | | eqeq2 2090 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑧 = 𝑦 ↔ 𝑧 = 𝐴)) |
| 3 | 2 | bibi1d 231 |
. . 3
⊢ (𝑦 = 𝐴 → ((𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ (𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
| 4 | 3 | albidv 1745 |
. 2
⊢ (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
| 5 | | eqeq2 2090 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
| 6 | 5 | alrimiv 1795 |
. . 3
⊢ (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
| 7 | | stdpc4 1698 |
. . . 4
⊢
(∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
| 8 | | sbbi 1874 |
. . . . 5
⊢ ([𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵)) |
| 9 | | eqsb3 2182 |
. . . . . . 7
⊢ ([𝑦 / 𝑧]𝑧 = 𝐵 ↔ 𝑦 = 𝐵) |
| 10 | 9 | bibi2i 225 |
. . . . . 6
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵)) |
| 11 | | equsb1 1708 |
. . . . . . 7
⊢ [𝑦 / 𝑧]𝑧 = 𝑦 |
| 12 | | bi1 116 |
. . . . . . 7
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵) → ([𝑦 / 𝑧]𝑧 = 𝑦 → 𝑦 = 𝐵)) |
| 13 | 11, 12 | mpi 15 |
. . . . . 6
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 14 | 10, 13 | sylbi 119 |
. . . . 5
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) → 𝑦 = 𝐵) |
| 15 | 8, 14 | sylbi 119 |
. . . 4
⊢ ([𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → 𝑦 = 𝐵) |
| 16 | 7, 15 | syl 14 |
. . 3
⊢
(∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → 𝑦 = 𝐵) |
| 17 | 6, 16 | impbii 124 |
. 2
⊢ (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
| 18 | 1, 4, 17 | vtoclbg 2659 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |