Proof of Theorem equveli
| Step | Hyp | Ref
| Expression |
| 1 | | albiim 1416 |
. 2
⊢
(∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) ↔ (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥))) |
| 2 | | ax12or 1443 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 3 | | equequ1 1638 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑥 ↔ 𝑥 = 𝑥)) |
| 4 | | equequ1 1638 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 ↔ 𝑥 = 𝑦)) |
| 5 | 3, 4 | imbi12d 232 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 6 | 5 | sps 1470 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 7 | 6 | dral2 1659 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 8 | | equid 1629 |
. . . . . . . . 9
⊢ 𝑥 = 𝑥 |
| 9 | 8 | a1bi 241 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦)) |
| 10 | 9 | biimpri 131 |
. . . . . . 7
⊢ ((𝑥 = 𝑥 → 𝑥 = 𝑦) → 𝑥 = 𝑦) |
| 11 | 10 | sps 1470 |
. . . . . 6
⊢
(∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦) → 𝑥 = 𝑦) |
| 12 | 7, 11 | syl6bi 161 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
| 13 | 12 | adantrd 273 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
| 14 | | equequ1 1638 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑦 ↔ 𝑦 = 𝑦)) |
| 15 | | equequ1 1638 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑦 = 𝑥)) |
| 16 | 14, 15 | imbi12d 232 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ (𝑦 = 𝑦 → 𝑦 = 𝑥))) |
| 17 | 16 | sps 1470 |
. . . . . . . 8
⊢
(∀𝑧 𝑧 = 𝑦 → ((𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ (𝑦 = 𝑦 → 𝑦 = 𝑥))) |
| 18 | 17 | dral1 1658 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ ∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥))) |
| 19 | | equid 1629 |
. . . . . . . . 9
⊢ 𝑦 = 𝑦 |
| 20 | | ax-4 1440 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → (𝑦 = 𝑦 → 𝑦 = 𝑥)) |
| 21 | 19, 20 | mpi 15 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 22 | | equcomi 1632 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → 𝑥 = 𝑦) |
| 24 | 18, 23 | syl6bi 161 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥) → 𝑥 = 𝑦)) |
| 25 | 24 | adantld 272 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
| 26 | | hba1 1473 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ∀𝑧∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 27 | | hbequid 1446 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥 → ∀𝑧 𝑥 = 𝑥) |
| 28 | 27 | a1i 9 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑥 → ∀𝑧 𝑥 = 𝑥)) |
| 29 | | ax-4 1440 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 30 | 26, 28, 29 | hbimd 1505 |
. . . . . . . . 9
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 31 | 30 | a5i 1475 |
. . . . . . . 8
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 32 | | equtr 1635 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑥 = 𝑥 → 𝑧 = 𝑥)) |
| 33 | | ax-8 1435 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 34 | 32, 33 | imim12d 73 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 35 | 34 | ax-gen 1378 |
. . . . . . . 8
⊢
∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 36 | | 19.26 1410 |
. . . . . . . . 9
⊢
(∀𝑧(((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) ↔ (∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ ∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))))) |
| 37 | | spimth 1663 |
. . . . . . . . 9
⊢
(∀𝑧(((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 38 | 36, 37 | sylbir 133 |
. . . . . . . 8
⊢
((∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ ∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 39 | 31, 35, 38 | sylancl 404 |
. . . . . . 7
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
| 40 | 8, 39 | mpii 43 |
. . . . . 6
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
| 41 | 40 | adantrd 273 |
. . . . 5
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
| 42 | 25, 41 | jaoi 668 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
| 43 | 13, 42 | jaoi 668 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
| 44 | 2, 43 | ax-mp 7 |
. 2
⊢
((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦) |
| 45 | 1, 44 | sylbi 119 |
1
⊢
(∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |