![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu3h | GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eu3h.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
eu3h | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1971 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
2 | eu3h.1 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | 2 | eumo0 1972 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | 1, 3 | jca 300 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
5 | 2 | nfi 1391 | . . . . 5 ⊢ Ⅎ𝑦𝜑 |
6 | 5 | mo23 1982 | . . . 4 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
7 | 6 | anim2i 334 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
8 | 5 | eu2 1985 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
9 | 7, 8 | sylibr 132 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ∃!𝑥𝜑) |
10 | 4, 9 | impbii 124 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 [wsb 1685 ∃!weu 1941 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 |
This theorem is referenced by: eu3 1987 mo2r 1993 2eu4 2034 |
Copyright terms: Public domain | W3C validator |