HomeHome Intuitionistic Logic Explorer
Theorem List (p. 20 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2sb6 1901* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremsbcom2v 1902* Lemma for proving sbcom2 1904. It is the same as sbcom2 1904 but with additional distinct variable constraints on 𝑥 and 𝑦, and on 𝑤 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2v2 1903* Lemma for proving sbcom2 1904. It is the same as sbcom2v 1902 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2 1904* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsb6a 1905* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
 
Theorem2sb5rf 1906* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theorem2sb6rf 1907* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theoremdfsb7 1908* An alternate definition of proper substitution df-sb 1686. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 1808, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 1909 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7f 1909* This version of dfsb7 1908 does not require that 𝜑 and 𝑧 be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1459 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1686 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7af 1910* An alternate definition of proper substitution df-sb 1686. Similar to dfsb7a 1911 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 1909 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . (Contributed by Jim Kingdon, 5-Feb-2018.)
𝑧𝜑       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremdfsb7a 1911* An alternate definition of proper substitution df-sb 1686. Similar to dfsb7 1908 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 1910. (Contributed by Jim Kingdon, 5-Feb-2018.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb10f 1912* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
 
Theoremsbid2v 1913* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbelx 1914* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 
Theoremsbel2x 1915* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))
 
Theoremsbalyz 1916* Move universal quantifier in and out of substitution. Identical to sbal 1917 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal 1917* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal1yz 1918* Lemma for proving sbal1 1919. Same as sbal1 1919 but with an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 23-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbal1 1919* A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbexyz 1920* Move existential quantifier in and out of substitution. Identical to sbex 1921 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbex 1921* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbalv 1922* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
 
Theoremsbco4lem 1923* Lemma for sbco4 1924. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbco4 1924* Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremexsb 1925* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
 
Theorem2exsb 1926* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
TheoremdvelimALT 1927* Version of dvelim 1934 that doesn't use ax-10 1436. Because it has different distinct variable constraints than dvelim 1934 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimfv 1928* Like dvelimf 1932 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremhbsb4 1929 A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
 
Theoremhbsb4t 1930 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1929). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
 
Theoremnfsb4t 1931 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1929). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
 
Theoremdvelimf 1932 Version of dvelim 1934 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimdf 1933 Deduction form of dvelimf 1932. This version may be useful if we want to avoid ax-17 1459 and use ax-16 1735 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
𝑥𝜑    &   𝑧𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑧𝜒)    &   (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
 
Theoremdvelim 1934* This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We don't require that 𝑥 and 𝑦 be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 1933.

Other variants of this theorem are dvelimf 1932 (with no distinct variable restrictions) and dvelimALT 1927 (that avoids ax-10 1436). (Contributed by NM, 23-Nov-1994.)

(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimor 1935* Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula 𝜑 (containing 𝑧) and a distinct variable constraint between 𝑥 and 𝑧. The theorem makes it possible to replace the distinct variable constraint with the disjunct 𝑥𝑥 = 𝑦 (𝜓 is just a version of 𝜑 with 𝑦 substituted for 𝑧). (Contributed by Jim Kingdon, 11-May-2018.)
𝑥𝜑    &   (𝑧 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)
 
Theoremdveeq1 1936* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theoremdveel1 1937* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
 
Theoremdveel2 1938* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
 
Theoremsbal2 1939* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremnfsb4or 1940 A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
𝑧𝜑       (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
1.4.6  Existential uniqueness
 
Syntaxweu 1941 Extend wff definition to include existential uniqueness ("there exists a unique 𝑥 such that 𝜑").
wff ∃!𝑥𝜑
 
Syntaxwmo 1942 Extend wff definition to include uniqueness ("there exists at most one 𝑥 such that 𝜑").
wff ∃*𝑥𝜑
 
Theoremeujust 1943* A soundness justification theorem for df-eu 1944, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
 
Definitiondf-eu 1944* Define existential uniqueness, i.e. "there exists exactly one 𝑥 such that 𝜑." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 1966, eu2 1985, eu3 1987, and eu5 1988 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2034). (Contributed by NM, 5-Aug-1993.)
(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Definitiondf-mo 1945 Define "there exists at most one 𝑥 such that 𝜑." Here we define it in terms of existential uniqueness. Notation of [BellMachover] p. 460, whose definition we show as mo3 1995. For another possible definition see mo4 2002. (Contributed by NM, 5-Aug-1993.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
 
Theoremeuf 1946* A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeubidh 1947 Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubid 1948 Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubidv 1949* Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubii 1950 Introduce uniqueness quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
(𝜑𝜓)       (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
 
Theoremhbeu1 1951 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.)
(∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑)
 
Theoremnfeu1 1952 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃!𝑥𝜑
 
Theoremnfmo1 1953 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃*𝑥𝜑
 
Theoremsb8eu 1954 Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8mo 1955 Variable substitution for "at most one." (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
 
Theoremnfeudv 1956* Deduction version of nfeu 1960. Similar to nfeud 1957 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfeud 1957 Deduction version of nfeu 1960. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfmod 1958 Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
 
Theoremnfeuv 1959* Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 1960 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfeu 1960 Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfmo 1961 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
𝑥𝜑       𝑥∃*𝑦𝜑
 
Theoremhbeu 1962 Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
(𝜑 → ∀𝑥𝜑)       (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
 
Theoremhbeud 1963 Deduction version of hbeu 1962. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓))
 
Theoremsb8euh 1964 Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbveu 1965 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremeu1 1966* An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
 
Theoremeuor 1967 Introduce a disjunct into a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.)
(𝜑 → ∀𝑥𝜑)       ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremeuorv 1968* Introduce a disjunct into a uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremmo2n 1969* There is at most one of something which does not exist. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremmon 1970 There is at most one of something which does not exist. (Contributed by Jim Kingdon, 5-Jul-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeuex 1971 Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃!𝑥𝜑 → ∃𝑥𝜑)
 
Theoremeumo0 1972* Existential uniqueness implies "at most one." (Contributed by NM, 8-Jul-1994.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeumo 1973 Existential uniqueness implies "at most one." (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeumoi 1974 "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.)
∃!𝑥𝜑       ∃*𝑥𝜑
 
Theoremmobidh 1975 Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobid 1976 Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobidv 1977* Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobii 1978 Formula-building rule for "at most one" quantifier (inference rule). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
(𝜓𝜒)       (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)
 
Theoremhbmo1 1979 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 8-Mar-1995.)
(∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑)
 
Theoremhbmo 1980 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
(𝜑 → ∀𝑥𝜑)       (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)
 
Theoremcbvmo 1981 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremmo23 1982* An implication between two definitions of "there exists at most one." (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmor 1983* Converse of mo23 1982 with an additional 𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremmodc 1984* Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu2 1985* An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu3h 1986* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu3 1987* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu5 1988 Uniqueness in terms of "at most one." (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
 
Theoremexmoeu2 1989 Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
(∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
 
Theoremmoabs 1990 Absorption of existence condition by "at most one." (Contributed by NM, 4-Nov-2002.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
 
Theoremexmodc 1991 If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
(DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))
 
Theoremexmonim 1992 There is at most one of something which does not exist. Unlike exmodc 1991 there is no decidability condition. (Contributed by Jim Kingdon, 22-Sep-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremmo2r 1993* A condition which implies "at most one." (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
 
Theoremmo3h 1994* Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo3 1995* Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo2dc 1996* Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeuan 1997 Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝜑 → ∀𝑥𝜑)       (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremeuanv 1998* Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
(∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremeuor2 1999 Introduce or eliminate a disjunct in a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(¬ ∃𝑥𝜑 → (∃!𝑥(𝜑𝜓) ↔ ∃!𝑥𝜓))
 
Theoremsbmo 2000* Substitution into "at most one". (Contributed by Jeff Madsen, 2-Sep-2009.)
([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >