| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubidv | GIF version | ||
| Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubidv | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eubidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | eubid 1948 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∃!weu 1941 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-eu 1944 |
| This theorem is referenced by: eubii 1950 eueq2dc 2765 eueq3dc 2766 reuhypd 4221 feu 5092 funfveu 5208 dff4im 5334 acexmid 5531 |
| Copyright terms: Public domain | W3C validator |