| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euorv | GIF version | ||
| Description: Introduce a disjunct into a uniqueness quantifier. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| euorv | ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | euor 1967 | 1 ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 ∃!weu 1941 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-eu 1944 |
| This theorem is referenced by: eueq2dc 2765 |
| Copyright terms: Public domain | W3C validator |