| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exists1 | GIF version | ||
| Description: Two ways to express "only one thing exists." The left-hand side requires only one variable to express this. Both sides are false in set theory. (Contributed by NM, 5-Apr-2004.) |
| Ref | Expression |
|---|---|
| exists1 | ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 1944 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∃𝑦∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) | |
| 2 | equid 1629 | . . . . . 6 ⊢ 𝑥 = 𝑥 | |
| 3 | 2 | tbt 245 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑦 ↔ 𝑥 = 𝑥)) |
| 4 | bicom 138 | . . . . 5 ⊢ ((𝑥 = 𝑦 ↔ 𝑥 = 𝑥) ↔ (𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) | |
| 5 | 3, 4 | bitri 182 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
| 6 | 5 | albii 1399 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
| 7 | 6 | exbii 1536 | . 2 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 ↔ ∃𝑦∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
| 8 | hbae 1646 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) | |
| 9 | 8 | 19.9h 1574 | . 2 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) |
| 10 | 1, 7, 9 | 3bitr2i 206 | 1 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∀wal 1282 ∃wex 1421 ∃!weu 1941 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-eu 1944 |
| This theorem is referenced by: exists2 2038 |
| Copyright terms: Public domain | W3C validator |