![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1535 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1380 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 2exbii 1537 3exbii 1538 exancom 1539 excom13 1619 exrot4 1621 eeor 1625 sbcof2 1731 sbequ8 1768 sbidm 1772 sborv 1811 19.41vv 1824 19.41vvv 1825 19.41vvvv 1826 exdistr 1828 19.42vvv 1830 exdistr2 1832 3exdistr 1833 4exdistr 1834 eean 1847 eeeanv 1849 ee4anv 1850 2sb5 1900 2sb5rf 1906 sbel2x 1915 sbexyz 1920 sbex 1921 exsb 1925 2exsb 1926 sb8eu 1954 sb8euh 1964 eu1 1966 eu2 1985 2moswapdc 2031 2exeu 2033 exists1 2037 clelab 2203 clabel 2204 sbabel 2244 rexbii2 2377 r2exf 2384 nfrexdya 2401 r19.41 2509 r19.43 2512 isset 2605 rexv 2617 ceqsex2 2639 ceqsex3v 2641 gencbvex 2645 ceqsrexv 2725 rexab 2754 rexrab2 2759 euxfrdc 2778 euind 2779 reu6 2781 reu3 2782 2reuswapdc 2794 reuind 2795 sbccomlem 2888 rmo2ilem 2903 rexun 3152 reupick3 3249 abn0r 3270 rabn0m 3272 rexsns 3432 exsnrex 3435 snprc 3457 euabsn2 3461 reusn 3463 eusn 3466 elunirab 3614 unipr 3615 uniun 3620 uniin 3621 iuncom4 3685 dfiun2g 3710 iunn0m 3738 iunxiun 3757 cbvopab2 3852 cbvopab2v 3855 unopab 3857 zfnuleu 3902 0ex 3905 vprc 3909 inex1 3912 intexabim 3927 iinexgm 3929 inuni 3930 unidif0 3941 axpweq 3945 zfpow 3949 axpow2 3950 axpow3 3951 pwex 3953 zfpair2 3965 mss 3981 exss 3982 opm 3989 eqvinop 3998 copsexg 3999 opabm 4035 iunopab 4036 zfun 4189 uniex2 4191 uniuni 4201 rexxfrd 4213 dtruex 4302 zfinf2 4330 elxp2 4381 opeliunxp 4413 xpiundi 4416 xpiundir 4417 elvvv 4421 eliunxp 4493 rexiunxp 4496 relop 4504 opelco2g 4521 cnvco 4538 cnvuni 4539 dfdm3 4540 dfrn2 4541 dfrn3 4542 elrng 4544 dfdm4 4545 eldm2g 4549 dmun 4560 dmin 4561 dmiun 4562 dmuni 4563 dmopab 4564 dmi 4568 dmmrnm 4572 elrn 4595 rnopab 4599 dmcosseq 4621 dmres 4650 elres 4664 elsnres 4665 dfima2 4690 elima3 4695 imadmrn 4698 imai 4701 args 4714 rniun 4754 ssrnres 4783 dmsnm 4806 dmsnopg 4812 elxp4 4828 elxp5 4829 cnvresima 4830 mptpreima 4834 dfco2 4840 coundi 4842 coundir 4843 resco 4845 imaco 4846 rnco 4847 coiun 4850 coi1 4856 coass 4859 xpcom 4884 dffun2 4932 imadif 4999 imainlem 5000 funimaexglem 5002 fun11iun 5167 f11o 5179 brprcneu 5191 nfvres 5227 fndmin 5295 abrexco 5419 imaiun 5420 dfoprab2 5572 cbvoprab2 5597 rexrnmpt2 5636 opabex3d 5768 opabex3 5769 abexssex 5772 abexex 5773 oprabrexex2 5777 releldm2 5831 dfopab2 5835 dfoprab3s 5836 cnvoprab 5875 brtpos2 5889 domen 6255 xpsnen 6318 xpcomco 6323 xpassen 6327 supelti 6415 subhalfnqq 6604 ltbtwnnq 6606 prnmaxl 6678 prnminu 6679 prarloc 6693 genpdflem 6697 genpassl 6714 genpassu 6715 ltexprlemm 6790 2rexuz 8670 bj-axempty 10684 bj-axempty2 10685 bj-vprc 10687 bdinex1 10690 bj-zfpair2 10701 bj-uniex2 10707 bj-d0clsepcl 10720 |
Copyright terms: Public domain | W3C validator |