![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expimpd | GIF version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 251 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: euotd 4009 swopo 4061 reusv3 4210 ralxfrd 4212 rexxfrd 4213 nlimsucg 4309 poirr2 4737 elpreima 5307 fmptco 5351 tposfo2 5905 nnm00 6125 th3qlem1 6231 supmoti 6406 infglbti 6438 infnlbti 6439 recexprlemss1l 6825 recexprlemss1u 6826 cauappcvgprlemladdru 6846 cauappcvgprlemladdrl 6847 caucvgprlemladdrl 6868 uzind 8458 ledivge1le 8803 xltnegi 8902 ixxssixx 8925 expnegzap 9510 shftlem 9704 cau3lem 10000 caubnd2 10003 climuni 10132 2clim 10140 dfgcd2 10403 cncongrprm 10536 bj-findis 10774 |
Copyright terms: Public domain | W3C validator |