ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpreima GIF version

Theorem elpreima 5307
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
elpreima (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))

Proof of Theorem elpreima
StepHypRef Expression
1 cnvimass 4708 . . . . 5 (𝐹𝐶) ⊆ dom 𝐹
21sseli 2995 . . . 4 (𝐵 ∈ (𝐹𝐶) → 𝐵 ∈ dom 𝐹)
3 fndm 5018 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43eleq2d 2148 . . . 4 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
52, 4syl5ib 152 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → 𝐵𝐴))
6 fnfun 5016 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
7 fvimacnvi 5302 . . . . 5 ((Fun 𝐹𝐵 ∈ (𝐹𝐶)) → (𝐹𝐵) ∈ 𝐶)
86, 7sylan 277 . . . 4 ((𝐹 Fn 𝐴𝐵 ∈ (𝐹𝐶)) → (𝐹𝐵) ∈ 𝐶)
98ex 113 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → (𝐹𝐵) ∈ 𝐶))
105, 9jcad 301 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) → (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
11 fvimacnv 5303 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1211funfni 5019 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1312biimpd 142 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) ∈ 𝐶𝐵 ∈ (𝐹𝐶)))
1413expimpd 355 . 2 (𝐹 Fn 𝐴 → ((𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶) → 𝐵 ∈ (𝐹𝐶)))
1510, 14impbid 127 1 (𝐹 Fn 𝐴 → (𝐵 ∈ (𝐹𝐶) ↔ (𝐵𝐴 ∧ (𝐹𝐵) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  ccnv 4362  dom cdm 4363  cima 4366  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  fniniseg  5308  fncnvima2  5309  rexsupp  5312  unpreima  5313  respreima  5316
  Copyright terms: Public domain W3C validator