| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exrot4 | GIF version | ||
| Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| exrot4 | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom13 1619 | . . 3 ⊢ (∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑤∃𝑧∃𝑦𝜑) | |
| 2 | 1 | exbii 1536 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑥∃𝑤∃𝑧∃𝑦𝜑) |
| 3 | excom13 1619 | . 2 ⊢ (∃𝑥∃𝑤∃𝑧∃𝑦𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | |
| 4 | 2, 3 | bitri 182 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: ee8anv 1851 elvvv 4421 dfoprab2 5572 xpassen 6327 enq0sym 6622 |
| Copyright terms: Public domain | W3C validator |