![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ssr | GIF version |
Description: Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
f1ssr | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5113 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | 1 | adantr 270 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹 Fn 𝐴) |
3 | simpr 108 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐶) | |
4 | df-f 4926 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | sylanbrc 408 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
6 | df-f1 4927 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
7 | 6 | simprbi 269 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
8 | 7 | adantr 270 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → Fun ◡𝐹) |
9 | df-f1 4927 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
10 | 5, 8, 9 | sylanbrc 408 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ⊆ wss 2973 ◡ccnv 4362 ran crn 4364 Fun wfun 4916 Fn wfn 4917 ⟶wf 4918 –1-1→wf1 4919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-f 4926 df-f1 4927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |