ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-f GIF version

Definition df-f 4926
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-f (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))

Detailed syntax breakdown of Definition df-f
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3wf 4918 . 2 wff 𝐹:𝐴𝐵
53, 1wfn 4917 . . 3 wff 𝐹 Fn 𝐴
63crn 4364 . . . 4 class ran 𝐹
76, 2wss 2973 . . 3 wff ran 𝐹𝐵
85, 7wa 102 . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)
94, 8wb 103 1 wff (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
Colors of variables: wff set class
This definition is referenced by:  feq1  5050  feq2  5051  feq3  5052  nff  5063  sbcfg  5065  ffn  5066  dffn2  5067  frn  5072  dffn3  5073  fss  5074  fco  5076  funssxp  5080  fun  5083  fnfco  5085  fssres  5086  fcoi2  5091  fintm  5095  fin  5096  f0  5100  fconst  5102  f1ssr  5118  fof  5126  dff1o2  5151  fun11iun  5167  ffoss  5178  dff2  5332  fmpt  5340  ffnfv  5344  ffvresb  5349  fpr  5366  fprg  5367  idref  5417  dff1o6  5436  fliftf  5459  1stcof  5810  2ndcof  5811  smores  5930  smores2  5932  iordsmo  5935  frec2uzf1od  9408  fclim  10133
  Copyright terms: Public domain W3C validator