![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 4918 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 4917 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4364 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 2973 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 102 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 103 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: feq1 5050 feq2 5051 feq3 5052 nff 5063 sbcfg 5065 ffn 5066 dffn2 5067 frn 5072 dffn3 5073 fss 5074 fco 5076 funssxp 5080 fun 5083 fnfco 5085 fssres 5086 fcoi2 5091 fintm 5095 fin 5096 f0 5100 fconst 5102 f1ssr 5118 fof 5126 dff1o2 5151 fun11iun 5167 ffoss 5178 dff2 5332 fmpt 5340 ffnfv 5344 ffvresb 5349 fpr 5366 fprg 5367 idref 5417 dff1o6 5436 fliftf 5459 1stcof 5810 2ndcof 5811 smores 5930 smores2 5932 iordsmo 5935 frec2uzf1od 9408 fclim 10133 |
Copyright terms: Public domain | W3C validator |