ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn GIF version

Theorem f1fn 5113
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5112 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 ffn 5066 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 4917  wf 4918  1-1wf1 4919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-f 4926  df-f1 4927
This theorem is referenced by:  f1fun  5114  f1rel  5115  f1dm  5116  f1ssr  5118  f1f1orn  5157  f1elima  5433  f1eqcocnv  5451  f1oiso  5485  phplem4dom  6348
  Copyright terms: Public domain W3C validator