ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falxortru GIF version

Theorem falxortru 1352
Description: A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
Assertion
Ref Expression
falxortru ((⊥ ⊻ ⊤) ↔ ⊤)

Proof of Theorem falxortru
StepHypRef Expression
1 df-xor 1307 . 2 ((⊥ ⊻ ⊤) ↔ ((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤)))
2 falortru 1338 . . 3 ((⊥ ∨ ⊤) ↔ ⊤)
3 notfal 1345 . . . 4 (¬ ⊥ ↔ ⊤)
4 falantru 1334 . . . 4 ((⊥ ∧ ⊤) ↔ ⊥)
53, 4xchnxbir 638 . . 3 (¬ (⊥ ∧ ⊤) ↔ ⊤)
62, 5anbi12i 447 . 2 (((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤)) ↔ (⊤ ∧ ⊤))
7 anidm 388 . 2 ((⊤ ∧ ⊤) ↔ ⊤)
81, 6, 73bitri 204 1 ((⊥ ⊻ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wo 661  wtru 1285  wfal 1289  wxo 1306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-xor 1307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator