![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notfal | GIF version |
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
notfal | ⊢ (¬ ⊥ ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1291 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | bitru 1296 | 1 ⊢ (¬ ⊥ ↔ ⊤) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ⊤wtru 1285 ⊥wfal 1289 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
This theorem is referenced by: truxorfal 1351 falxortru 1352 falxorfal 1353 |
Copyright terms: Public domain | W3C validator |