| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5066 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5016 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 4916 Fn wfn 4917 ⟶wf 4918 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
| This theorem depends on definitions: df-bi 115 df-fn 4925 df-f 4926 |
| This theorem is referenced by: funssxp 5080 f00 5101 fofun 5127 fun11iun 5167 fimacnv 5317 dff3im 5333 fmptco 5351 fliftf 5459 smores2 5932 ac6sfi 6379 nn0supp 8340 climdm 10134 |
| Copyright terms: Public domain | W3C validator |