ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff3im GIF version

Theorem dff3im 5333
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff3im (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3im
StepHypRef Expression
1 fssxp 5078 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 5068 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
32adantr 270 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → Fun 𝐹)
4 fdm 5070 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
54eleq2d 2148 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
65biimpar 291 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 funfvop 5300 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
83, 6, 7syl2anc 403 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
9 df-br 3786 . . . . . 6 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
108, 9sylibr 132 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
11 funfvex 5212 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
12 breq2 3789 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1312spcegv 2686 . . . . . . 7 ((𝐹𝑥) ∈ V → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
1411, 13syl 14 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
153, 6, 14syl2anc 403 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
1610, 15mpd 13 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
17 funmo 4937 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
182, 17syl 14 . . . . 5 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1918adantr 270 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
20 eu5 1988 . . . 4 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
2116, 19, 20sylanbrc 408 . . 3 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
2221ralrimiva 2434 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
231, 22jca 300 1 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1421  wcel 1433  ∃!weu 1941  ∃*wmo 1942  wral 2348  Vcvv 2601  wss 2973  cop 3401   class class class wbr 3785   × cxp 4361  dom cdm 4363  Fun wfun 4916  wf 4918  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by:  dff4im  5334
  Copyright terms: Public domain W3C validator