![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dff3im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5078 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | ffun 5068 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 2 | adantr 270 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
4 | fdm 5070 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2148 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | biimpar 291 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
7 | funfvop 5300 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
8 | 3, 6, 7 | syl2anc 403 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
9 | df-br 3786 | . . . . . 6 ⊢ (𝑥𝐹(𝐹‘𝑥) ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
10 | 8, 9 | sylibr 132 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
11 | funfvex 5212 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
12 | breq2 3789 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐹𝑦 ↔ 𝑥𝐹(𝐹‘𝑥))) | |
13 | 12 | spcegv 2686 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ V → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
14 | 11, 13 | syl 14 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
15 | 3, 6, 14 | syl2anc 403 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
16 | 10, 15 | mpd 13 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑥𝐹𝑦) |
17 | funmo 4937 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) | |
18 | 2, 17 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∃*𝑦 𝑥𝐹𝑦) |
19 | 18 | adantr 270 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃*𝑦 𝑥𝐹𝑦) |
20 | eu5 1988 | . . . 4 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦)) | |
21 | 16, 19, 20 | sylanbrc 408 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 𝑥𝐹𝑦) |
22 | 21 | ralrimiva 2434 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) |
23 | 1, 22 | jca 300 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 ∃*wmo 1942 ∀wral 2348 Vcvv 2601 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 × cxp 4361 dom cdm 4363 Fun wfun 4916 ⟶wf 4918 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 |
This theorem is referenced by: dff4im 5334 |
Copyright terms: Public domain | W3C validator |