| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gencl | GIF version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| Ref | Expression |
|---|---|
| gencl.1 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) |
| gencl.2 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| gencl.3 | ⊢ (𝜒 → 𝜑) |
| Ref | Expression |
|---|---|
| gencl | ⊢ (𝜃 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencl.1 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) | |
| 2 | gencl.3 | . . . . 5 ⊢ (𝜒 → 𝜑) | |
| 3 | gencl.2 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | syl5ib 152 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝜒 → 𝜓)) |
| 5 | 4 | impcom 123 | . . 3 ⊢ ((𝜒 ∧ 𝐴 = 𝐵) → 𝜓) |
| 6 | 5 | exlimiv 1529 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝐵) → 𝜓) |
| 7 | 1, 6 | sylbi 119 | 1 ⊢ (𝜃 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-gen 1378 ax-ie2 1423 ax-17 1459 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: 2gencl 2632 3gencl 2633 axprecex 7046 axpre-ltirr 7048 |
| Copyright terms: Public domain | W3C validator |