HomeHome Intuitionistic Logic Explorer
Theorem List (p. 27 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
2.1.6  The universal class
 
Syntaxcvv 2601 Extend class notation to include the universal class symbol.
class V
 
Theoremvjust 2602 Soundness justification theorem for df-v 2603. (Contributed by Rodolfo Medina, 27-Apr-2010.)
{𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
 
Definitiondf-v 2603 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
V = {𝑥𝑥 = 𝑥}
 
Theoremvex 2604 All setvar variables are sets (see isset 2605). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
𝑥 ∈ V
 
Theoremisset 2605* Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2603) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4192. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4193, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2077 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

(𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremissetf 2606 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremisseti 2607* A way to say "𝐴 is a set" (inference rule). (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝑥 𝑥 = 𝐴
 
Theoremissetri 2608* A way to say "𝐴 is a set" (inference rule). (Contributed by NM, 5-Aug-1993.)
𝑥 𝑥 = 𝐴       𝐴 ∈ V
 
Theoremeqvisset 2609 A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 2605 and issetri 2608. (Contributed by BJ, 27-Apr-2019.)
(𝑥 = 𝐴𝐴 ∈ V)
 
Theoremelex 2610 If a class is a member of another class, it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝐵𝐴 ∈ V)
 
Theoremelexi 2611 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
𝐴𝐵       𝐴 ∈ V
 
Theoremelexd 2612 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴𝑉)       (𝜑𝐴 ∈ V)
 
Theoremelisset 2613* An element of a class exists. (Contributed by NM, 1-May-1995.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theoremelex22 2614* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
 
Theoremelex2 2615* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
(𝐴𝐵 → ∃𝑥 𝑥𝐵)
 
Theoremralv 2616 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∀𝑥 ∈ V 𝜑 ↔ ∀𝑥𝜑)
 
Theoremrexv 2617 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
(∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
 
Theoremreuv 2618 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
(∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 
Theoremrmov 2619 A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
 
Theoremrabab 2620 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
{𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
 
Theoremralcom4 2621* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4 2622* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
 
Theoremrexcom4a 2623* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
(∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
 
Theoremrexcom4b 2624* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
𝐵 ∈ V       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theoremceqsalt 2625* Closed theorem version of ceqsalg 2627. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsralt 2626* Restricted quantifier version of ceqsalt 2625. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsalg 2627* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremceqsal 2628* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsalv 2629* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsralv 2630* Restricted quantifier version of ceqsalv 2629. (Contributed by NM, 21-Jun-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theoremgencl 2631* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝐵))    &   (𝐴 = 𝐵 → (𝜑𝜓))    &   (𝜒𝜑)       (𝜃𝜓)
 
Theorem2gencl 2632* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐶𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐶)    &   (𝐷𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐷)    &   (𝐴 = 𝐶 → (𝜑𝜓))    &   (𝐵 = 𝐷 → (𝜓𝜒))    &   ((𝑥𝑅𝑦𝑅) → 𝜑)       ((𝐶𝑆𝐷𝑆) → 𝜒)
 
Theorem3gencl 2633* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
(𝐷𝑆 ↔ ∃𝑥𝑅 𝐴 = 𝐷)    &   (𝐹𝑆 ↔ ∃𝑦𝑅 𝐵 = 𝐹)    &   (𝐺𝑆 ↔ ∃𝑧𝑅 𝐶 = 𝐺)    &   (𝐴 = 𝐷 → (𝜑𝜓))    &   (𝐵 = 𝐹 → (𝜓𝜒))    &   (𝐶 = 𝐺 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑅𝑧𝑅) → 𝜑)       ((𝐷𝑆𝐹𝑆𝐺𝑆) → 𝜃)
 
Theoremcgsexg 2634* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
(𝑥 = 𝐴𝜒)    &   (𝜒 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex2g 2635* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)    &   (𝜒 → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
 
Theoremcgsex4g 2636* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → 𝜒)    &   (𝜒 → (𝜑𝜓))       (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤(𝜒𝜑) ↔ 𝜓))
 
Theoremceqsex 2637* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsexv 2638* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theoremceqsex2 2639* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
𝑥𝜓    &   𝑦𝜒    &   𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
 
Theoremceqsex2v 2640* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
 
Theoremceqsex3v 2641* Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃)
 
Theoremceqsex4v 2642* Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))       (∃𝑥𝑦𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏)
 
Theoremceqsex6v 2643* Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))    &   (𝑣 = 𝐸 → (𝜏𝜂))    &   (𝑢 = 𝐹 → (𝜂𝜁))       (∃𝑥𝑦𝑧𝑤𝑣𝑢((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ (𝑤 = 𝐷𝑣 = 𝐸𝑢 = 𝐹) ∧ 𝜑) ↔ 𝜁)
 
Theoremceqsex8v 2644* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V    &   𝐺 ∈ V    &   𝐻 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   (𝑤 = 𝐷 → (𝜃𝜏))    &   (𝑣 = 𝐸 → (𝜏𝜂))    &   (𝑢 = 𝐹 → (𝜂𝜁))    &   (𝑡 = 𝐺 → (𝜁𝜎))    &   (𝑠 = 𝐻 → (𝜎𝜌))       (∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸𝑢 = 𝐹) ∧ (𝑡 = 𝐺𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌)
 
Theoremgencbvex 2645* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))       (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
 
Theoremgencbvex2 2646* Restatement of gencbvex 2645 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))       (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
 
Theoremgencbval 2647* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
𝐴 ∈ V    &   (𝐴 = 𝑦 → (𝜑𝜓))    &   (𝐴 = 𝑦 → (𝜒𝜃))    &   (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))       (∀𝑥(𝜒𝜑) ↔ ∀𝑦(𝜃𝜓))
 
Theoremsbhypf 2648* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremvtoclgft 2649 Closed theorem form of vtoclgf 2657. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
(((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
 
Theoremvtocldf 2650 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   (𝜑𝜓)    &   𝑥𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑𝜒)
 
Theoremvtocld 2651* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   (𝜑𝜓)       (𝜑𝜒)
 
Theoremvtoclf 2652* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1680. (Contributed by NM, 30-Aug-1993.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl 2653* Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl2 2654* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtocl3 2655* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremvtoclb 2656* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜓𝜃))    &   (𝜑𝜓)       (𝜒𝜃)
 
Theoremvtoclgf 2657 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theoremvtoclg 2658* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theoremvtoclbg 2659* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
(𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜓𝜃))    &   (𝜑𝜓)       (𝐴𝑉 → (𝜒𝜃))
 
Theoremvtocl2gf 2660 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝜓    &   𝑦𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝜑       ((𝐴𝑉𝐵𝑊) → 𝜒)
 
Theoremvtocl3gf 2661 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴    &   𝑦𝐵    &   𝑧𝐵    &   𝑧𝐶    &   𝑥𝜓    &   𝑦𝜒    &   𝑧𝜃    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   𝜑       ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)
 
Theoremvtocl2g 2662* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   𝜑       ((𝐴𝑉𝐵𝑊) → 𝜒)
 
Theoremvtoclgaf 2663* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝐵𝜓)
 
Theoremvtoclga 2664* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝐵𝜓)
 
Theoremvtocl2gaf 2665* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝜓    &   𝑦𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   ((𝑥𝐶𝑦𝐷) → 𝜑)       ((𝐴𝐶𝐵𝐷) → 𝜒)
 
Theoremvtocl2ga 2666* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   ((𝑥𝐶𝑦𝐷) → 𝜑)       ((𝐴𝐶𝐵𝐷) → 𝜒)
 
Theoremvtocl3gaf 2667* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴    &   𝑦𝐵    &   𝑧𝐵    &   𝑧𝐶    &   𝑥𝜓    &   𝑦𝜒    &   𝑧𝜃    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑆𝑧𝑇) → 𝜑)       ((𝐴𝑅𝐵𝑆𝐶𝑇) → 𝜃)
 
Theoremvtocl3ga 2668* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝐷𝑦𝑅𝑧𝑆) → 𝜑)       ((𝐴𝐷𝐵𝑅𝐶𝑆) → 𝜃)
 
Theoremvtocleg 2669* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
(𝑥 = 𝐴𝜑)       (𝐴𝑉𝜑)
 
Theoremvtoclegft 2670* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2671.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
 
Theoremvtoclef 2671* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑    &   𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
 
Theoremvtocle 2672* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝜑)       𝜑
 
Theoremvtoclri 2673* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝑥𝐵 𝜑       (𝐴𝐵𝜓)
 
Theoremspcimgft 2674 A closed version of spcimgf 2678. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
 
Theoremspcgft 2675 A closed version of spcgf 2680. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
 
Theoremspcimegft 2676 A closed version of spcimegf 2679. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
 
Theoremspcegft 2677 A closed version of spcegf 2681. (Contributed by Jim Kingdon, 22-Jun-2018.)
𝑥𝜓    &   𝑥𝐴       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
 
Theoremspcimgf 2678 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcimegf 2679 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜓𝜑))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspcgf 2680 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcegf 2681 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
𝑥𝐴    &   𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspcimdv 2682* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremspcdv 2683* Rule of specialization, using implicit substitution. Analogous to rspcdv 2704. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremspcimedv 2684* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜒𝜓))       (𝜑 → (𝜒 → ∃𝑥𝜓))
 
Theoremspcgv 2685* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥𝜑𝜓))
 
Theoremspcegv 2686* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 
Theoremspc2egv 2687* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦𝜑))
 
Theoremspc2gv 2688* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
 
Theoremspc3egv 2689* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
 
Theoremspc3gv 2690* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥𝑦𝑧𝜑𝜓))
 
Theoremspcv 2691* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspcev 2692* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝜓 → ∃𝑥𝜑)
 
Theoremspc2ev 2693* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       (𝜓 → ∃𝑥𝑦𝜑)
 
Theoremrspct 2694* A closed version of rspc 2695. (Contributed by Andrew Salmon, 6-Jun-2011.)
𝑥𝜓       (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
 
Theoremrspc 2695* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
 
Theoremrspce 2696* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrspcv 2697* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
 
Theoremrspccv 2698* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
(𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
 
Theoremrspcva 2699* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
 
Theoremrspccva 2700* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >