![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1529 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 7 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1459 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1524 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-gen 1378 ax-ie2 1423 ax-17 1459 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ax11v 1748 ax11ev 1749 equs5or 1751 exlimivv 1817 mo23 1982 mopick 2019 gencl 2631 cgsexg 2634 gencbvex2 2646 vtocleg 2669 eqvinc 2718 eqvincg 2719 elrabi 2746 sbcex2 2867 oprcl 3594 eluni 3604 intab 3665 uniintsnr 3672 trintssm 3891 bm1.3ii 3899 inteximm 3924 axpweq 3945 bnd2 3947 unipw 3972 euabex 3980 mss 3981 exss 3982 opelopabsb 4015 eusvnf 4203 eusvnfb 4204 regexmidlem1 4276 eunex 4304 relop 4504 dmrnssfld 4613 xpmlem 4764 dmxpss 4773 dmsnopg 4812 elxp5 4829 iotauni 4899 iota1 4901 iota4 4905 funimaexglem 5002 ffoss 5178 relelfvdm 5226 nfvres 5227 fvelrnb 5242 eusvobj2 5518 acexmidlemv 5530 fnoprabg 5622 fo1stresm 5808 fo2ndresm 5809 eloprabi 5842 cnvoprab 5875 reldmtpos 5891 dftpos4 5901 tfrlem9 5958 tfrexlem 5971 ecdmn0m 6171 bren 6251 brdomg 6252 ener 6282 en0 6298 en1 6302 en1bg 6303 2dom 6308 fiprc 6315 enm 6317 php5dom 6349 ssfilem 6360 diffitest 6371 pm54.43 6459 subhalfnqq 6604 nqnq0pi 6628 nqnq0 6631 prarloc 6693 nqprm 6732 ltexprlemm 6790 recexprlemell 6812 recexprlemelu 6813 recexprlemopl 6815 recexprlemopu 6817 recexprlempr 6822 fzm 9057 fzom 9173 fclim 10133 climmo 10137 bdbm1.3ii 10682 |
Copyright terms: Public domain | W3C validator |