| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hbex.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbex | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1424 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 2 | 1 | hbal 1406 | . 2 ⊢ (∀𝑥∃𝑦𝜑 → ∀𝑦∀𝑥∃𝑦𝜑) |
| 3 | hbex.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 19.8a 1522 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 5 | 3, 4 | alrimih 1398 | . 2 ⊢ (𝜑 → ∀𝑥∃𝑦𝜑) |
| 6 | 2, 5 | exlimih 1524 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: nfex 1568 excomim 1593 19.12 1595 cbvexh 1678 cbvexdh 1842 hbsbv 1858 hbeu1 1951 hbmo 1980 moexexdc 2025 |
| Copyright terms: Public domain | W3C validator |