| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbim | ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1440 | . . 3 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | hb.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 1, 2 | imim12i 58 | . 2 ⊢ ((𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | ax-i5r 1468 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | |
| 5 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 6 | 5 | imim1i 59 | . . 3 ⊢ ((∀𝑥𝜑 → 𝜓) → (𝜑 → 𝜓)) |
| 7 | 6 | alimi 1384 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 4, 7 | 3syl 17 | 1 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-5 1376 ax-gen 1378 ax-4 1440 ax-i5r 1468 |
| This theorem is referenced by: hbbi 1480 hbia1 1484 19.21h 1489 19.38 1606 hbsbv 1858 hbmo1 1979 hbmo 1980 moexexdc 2025 2eu4 2034 cleqh 2178 hbral 2395 |
| Copyright terms: Public domain | W3C validator |