ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4 GIF version

Theorem hbsb4 1929
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypothesis
Ref Expression
hbsb4.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb4 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))

Proof of Theorem hbsb4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hbsb4.1 . . 3 (𝜑 → ∀𝑧𝜑)
21hbsb 1864 . 2 ([𝑤 / 𝑥]𝜑 → ∀𝑧[𝑤 / 𝑥]𝜑)
3 sbequ 1761 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3dvelimALT 1927 1 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1282  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  hbsb4t  1930  dvelimf  1932
  Copyright terms: Public domain W3C validator