![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imanim | GIF version |
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 819. (Contributed by Jim Kingdon, 24-Dec-2017.) |
Ref | Expression |
---|---|
imanim | ⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 815 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
2 | 1 | con2i 589 | 1 ⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-in1 576 ax-in2 577 |
This theorem is referenced by: difdif 3097 ssdif0im 3308 inssdif0im 3311 nominpos 8268 |
Copyright terms: Public domain | W3C validator |