![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssdif0im | GIF version |
Description: Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
ssdif0im | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imanim 818 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 2982 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylnibr 634 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | alimi 1384 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 2988 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 3266 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3imtr4i 199 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ∖ cdif 2970 ⊆ wss 2973 ∅c0 3251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-in 2979 df-ss 2986 df-nul 3252 |
This theorem is referenced by: vdif0im 3309 difrab0eqim 3310 difid 3312 difin0 3317 |
Copyright terms: Public domain | W3C validator |