![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inidm | GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 388 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 3159 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 ∩ cin 2972 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 |
This theorem is referenced by: inindi 3183 inindir 3184 uneqin 3215 ssdifeq0 3325 intsng 3670 xpindi 4489 xpindir 4490 resindm 4670 ofres 5745 offval2 5746 ofrfval2 5747 suppssof1 5748 ofco 5749 offveqb 5750 caofref 5752 caofrss 5755 caoftrn 5756 |
Copyright terms: Public domain | W3C validator |