ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inidm GIF version

Theorem inidm 3175
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
inidm (𝐴𝐴) = 𝐴

Proof of Theorem inidm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anidm 388 . 2 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
21ineqri 3159 1 (𝐴𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  cin 2972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979
This theorem is referenced by:  inindi  3183  inindir  3184  uneqin  3215  ssdifeq0  3325  intsng  3670  xpindi  4489  xpindir  4490  resindm  4670  ofres  5745  offval2  5746  ofrfval2  5747  suppssof1  5748  ofco  5749  offveqb  5750  caofref  5752  caofrss  5755  caoftrn  5756
  Copyright terms: Public domain W3C validator