ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofco GIF version

Theorem ofco 5749
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1 (𝜑𝐹 Fn 𝐴)
ofco.2 (𝜑𝐺 Fn 𝐵)
ofco.3 (𝜑𝐻:𝐷𝐶)
ofco.4 (𝜑𝐴𝑉)
ofco.5 (𝜑𝐵𝑊)
ofco.6 (𝜑𝐷𝑋)
ofco.7 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofco (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)))

Proof of Theorem ofco
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4 (𝜑𝐻:𝐷𝐶)
21ffvelrnda 5323 . . 3 ((𝜑𝑥𝐷) → (𝐻𝑥) ∈ 𝐶)
31feqmptd 5247 . . 3 (𝜑𝐻 = (𝑥𝐷 ↦ (𝐻𝑥)))
4 ofco.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofco.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 ofco.4 . . . 4 (𝜑𝐴𝑉)
7 ofco.5 . . . 4 (𝜑𝐵𝑊)
8 ofco.7 . . . 4 (𝐴𝐵) = 𝐶
9 eqidd 2082 . . . 4 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2082 . . . 4 ((𝜑𝑦𝐵) → (𝐺𝑦) = (𝐺𝑦))
114, 5, 6, 7, 8, 9, 10offval 5739 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑦𝐶 ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
12 fveq2 5198 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
13 fveq2 5198 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1412, 13oveq12d 5550 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
152, 3, 11, 14fmptco 5351 . 2 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
16 inss1 3186 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
178, 16eqsstr3i 3030 . . . . 5 𝐶𝐴
18 fss 5074 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐴) → 𝐻:𝐷𝐴)
191, 17, 18sylancl 404 . . . 4 (𝜑𝐻:𝐷𝐴)
20 fnfco 5085 . . . 4 ((𝐹 Fn 𝐴𝐻:𝐷𝐴) → (𝐹𝐻) Fn 𝐷)
214, 19, 20syl2anc 403 . . 3 (𝜑 → (𝐹𝐻) Fn 𝐷)
22 inss2 3187 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
238, 22eqsstr3i 3030 . . . . 5 𝐶𝐵
24 fss 5074 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐵) → 𝐻:𝐷𝐵)
251, 23, 24sylancl 404 . . . 4 (𝜑𝐻:𝐷𝐵)
26 fnfco 5085 . . . 4 ((𝐺 Fn 𝐵𝐻:𝐷𝐵) → (𝐺𝐻) Fn 𝐷)
275, 25, 26syl2anc 403 . . 3 (𝜑 → (𝐺𝐻) Fn 𝐷)
28 ofco.6 . . 3 (𝜑𝐷𝑋)
29 inidm 3175 . . 3 (𝐷𝐷) = 𝐷
30 ffn 5066 . . . . 5 (𝐻:𝐷𝐶𝐻 Fn 𝐷)
311, 30syl 14 . . . 4 (𝜑𝐻 Fn 𝐷)
32 fvco2 5263 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3331, 32sylan 277 . . 3 ((𝜑𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
34 fvco2 5263 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3531, 34sylan 277 . . 3 ((𝜑𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3621, 27, 28, 28, 29, 33, 35offval 5739 . 2 (𝜑 → ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
3715, 36eqtr4d 2116 1 (𝜑 → ((𝐹𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘𝑓 𝑅(𝐺𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cin 2972  wss 2973  cmpt 3839  ccom 4367   Fn wfn 4917  wf 4918  cfv 4922  (class class class)co 5532  𝑓 cof 5730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-of 5732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator