ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexr GIF version

Theorem intexr 3925
Description: If the intersection of a class exists, the class is non-empty. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem intexr
StepHypRef Expression
1 vprc 3909 . . 3 ¬ V ∈ V
2 inteq 3639 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3650 . . . . 5 ∅ = V
42, 3syl6eq 2129 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2147 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 632 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2299 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wne 2245  Vcvv 2601  c0 3251   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-nul 3252  df-int 3637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator