![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vprc | GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 3908 | . . 3 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 2 | tbt 245 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
4 | 3 | albii 1399 | . . . . 5 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
5 | dfcleq 2075 | . . . . 5 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
6 | 4, 5 | bitr4i 185 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
7 | 6 | exbii 1536 | . . 3 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
8 | 1, 7 | mtbi 627 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V |
9 | isset 2605 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
10 | 8, 9 | mtbir 628 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 ax-sep 3896 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
This theorem is referenced by: nvel 3910 vnex 3911 intexr 3925 intnexr 3926 snnex 4199 ruALT 4294 iprc 4618 |
Copyright terms: Public domain | W3C validator |