| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 108 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 590 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-in1 576 ax-in2 577 |
| This theorem is referenced by: dcan 875 poxp 5873 cauappcvgprlemladdrl 6847 caucvgprlemladdrl 6868 xrrebnd 8886 fzpreddisj 9088 fzp1nel 9121 gcdsupex 10349 gcdsupcl 10350 gcdnncl 10359 gcd2n0cl 10361 qredeu 10479 cncongr2 10486 |
| Copyright terms: Public domain | W3C validator |