ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdsupex GIF version

Theorem gcdsupex 10349
Description: Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdsupex (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑋,𝑥,𝑦,𝑧   𝑛,𝑌,𝑥,𝑦,𝑧

Proof of Theorem gcdsupex
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1zzd 8378 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 1 ∈ ℤ)
2 breq1 3788 . . 3 (𝑛 = 1 → (𝑛𝑋 ↔ 1 ∥ 𝑋))
3 breq1 3788 . . 3 (𝑛 = 1 → (𝑛𝑌 ↔ 1 ∥ 𝑌))
42, 3anbi12d 456 . 2 (𝑛 = 1 → ((𝑛𝑋𝑛𝑌) ↔ (1 ∥ 𝑋 ∧ 1 ∥ 𝑌)))
5 1dvds 10209 . . . 4 (𝑋 ∈ ℤ → 1 ∥ 𝑋)
6 1dvds 10209 . . . 4 (𝑌 ∈ ℤ → 1 ∥ 𝑌)
75, 6anim12i 331 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
87adantr 270 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (1 ∥ 𝑋 ∧ 1 ∥ 𝑌))
9 elnnuz 8655 . . . . . 6 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
109biimpri 131 . . . . 5 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
11 simpll 495 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑋 ∈ ℤ)
12 dvdsdc 10203 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑋 ∈ ℤ) → DECID 𝑛𝑋)
1310, 11, 12syl2an2 558 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑋)
14 simplr 496 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑌 ∈ ℤ)
15 dvdsdc 10203 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑌 ∈ ℤ) → DECID 𝑛𝑌)
1610, 14, 15syl2an2 558 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID 𝑛𝑌)
17 dcan 875 . . . 4 (DECID 𝑛𝑋 → (DECID 𝑛𝑌DECID (𝑛𝑋𝑛𝑌)))
1813, 16, 17sylc 61 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
1918adantlr 460 . 2 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑛 ∈ (ℤ‘1)) → DECID (𝑛𝑋𝑛𝑌))
20 simplll 499 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℤ)
21 dvdsbnd 10348 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
22 nnuz 8654 . . . . . . 7 ℕ = (ℤ‘1)
2322rexeqi 2554 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
2421, 23sylib 120 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋)
25 id 19 . . . . . . . 8 𝑛𝑋 → ¬ 𝑛𝑋)
2625intnanrd 874 . . . . . . 7 𝑛𝑋 → ¬ (𝑛𝑋𝑛𝑌))
2726ralimi 2426 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2827reximi 2458 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑋 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
2924, 28syl 14 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3020, 29sylancom 411 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑋 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
31 simpllr 500 . . . 4 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
32 dvdsbnd 10348 . . . . . 6 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3322rexeqi 2554 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 ↔ ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
3432, 33sylib 120 . . . . 5 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌)
35 id 19 . . . . . . . 8 𝑛𝑌 → ¬ 𝑛𝑌)
3635intnand 873 . . . . . . 7 𝑛𝑌 → ¬ (𝑛𝑋𝑛𝑌))
3736ralimi 2426 . . . . . 6 (∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3837reximi 2458 . . . . 5 (∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ 𝑛𝑌 → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
3934, 38syl 14 . . . 4 ((𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
4031, 39sylancom 411 . . 3 ((((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) ∧ 𝑌 ≠ 0) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
41 simpr 108 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ¬ (𝑋 = 0 ∧ 𝑌 = 0))
42 simpll 495 . . . . . . 7 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → 𝑋 ∈ ℤ)
43 0z 8362 . . . . . . 7 0 ∈ ℤ
44 zdceq 8423 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑋 = 0)
4542, 43, 44sylancl 404 . . . . . 6 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → DECID 𝑋 = 0)
46 ianordc 832 . . . . . 6 (DECID 𝑋 = 0 → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4745, 46syl 14 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ (𝑋 = 0 ∧ 𝑌 = 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0)))
4841, 47mpbid 145 . . . 4 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
49 df-ne 2246 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
50 df-ne 2246 . . . . 5 (𝑌 ≠ 0 ↔ ¬ 𝑌 = 0)
5149, 50orbi12i 713 . . . 4 ((𝑋 ≠ 0 ∨ 𝑌 ≠ 0) ↔ (¬ 𝑋 = 0 ∨ ¬ 𝑌 = 0))
5248, 51sylibr 132 . . 3 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → (𝑋 ≠ 0 ∨ 𝑌 ≠ 0))
5330, 40, 52mpjaodan 744 . 2 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑗 ∈ (ℤ‘1)∀𝑛 ∈ (ℤ𝑗) ¬ (𝑛𝑋𝑛𝑌))
541, 4, 8, 19, 53zsupcllemex 10342 1 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775   = wceq 1284  wcel 1433  wne 2245  wral 2348  wrex 2349  {crab 2352   class class class wbr 3785  cfv 4922  cr 6980  0cc0 6981  1c1 6982   < clt 7153  cn 8039  cz 8351  cuz 8619  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  gcddvds  10355  dvdslegcd  10356
  Copyright terms: Public domain W3C validator